Predicting the future from the past: volatile markers for respiratory infections
نویسندگان
چکیده
منابع مشابه
Predicting the future from the past.
Introduction Like everyone else I am getting older, and I am being asked to talk more and more about the future (a coincidence?). By definition, these talks are speculative (there is no evidence for the future) and they reflect, almost exclusively, a personal view, which in turn arises from my own by definition restricted vital experiences. While preparing one of these talks, I thought that nob...
متن کاملPredicting the Past, Remembering the Future.
Rational analyses of memory suggest that retrievability of past experience depends on its usefulness for predicting the future: memory is adapted to the temporal structure of the environment. Recent research has enriched this view by applying it to semantic memory and reinforcement learning. This paper describes how multiple forms of memory can be linked via common predictive principles, possib...
متن کاملPredicting Acute Respiratory Infections from Participatory Data
Introduction ARIs have epidemic and pandemic potential. Prediction of presence of ARIs from individual signs and symptoms in existing studies have been based on clinically-sourced data1. Clinical data generally represents the most severe cases, and those from locations with access to healthcare institutions. Thus, the viral information that comes from clinical sampling is insufficient to either...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Respiratory Journal
سال: 2017
ISSN: 0903-1936,1399-3003
DOI: 10.1183/13993003.50264-2017